School District Size, Fiscal Efficiency, and Student Outcomes: Lessons from Research

A presentation to the Joint Legislative Study Committee on the Division of Local School Administrative Units
March 28, 2018

Presentation overview

• Introductions
• Historical context
• Review of relevant literature
 • Finding from the cost literature
 • Findings from the production literature
• Questions and discussion
Eric A. Houck, PhD

- Associate Professor of Leadership and Policy, School of Education, University of North Carolina at Chapel Hill
- Author of “Examining School District Efficiency in Georgia” in the *Journal of School Finance* (Spring 2010).
- Author “Measuring Charter School Efficiency in North Carolina: A Modified Quadriform Analysis”

Kevin C. Bastian, PhD

- Senior Research Associate in the Department of Public Policy at UNC Chapel Hill and Associate Director of the Education Policy Initiative at Carolina (EPIC)
- Director of Educator Quality Research Initiative, partnership between UNC Chapel Hill and UNC System focused on educator effectiveness
- Published work on educator preparation and effectiveness, equitable distribution of teachers, beginning teacher supports, and school quality
Historical Context

- A history of LEA and school consolidation in the US
 - From 117,000 LEAs in 1940 to 14,000 in 2009; from 200,000 schools in 1940 to 87,000 in 2009
- Rationales for consolidation
- Concerns with consolidation
- Consolidation/closure still a relevant topic at the LEA and school level
- What the history of consolidation means for research and commentary on deconsolidation?

Findings from the Cost Literature
Findings from cost studies

- Cost studies seek to find minimum operational costs, holding performance constant
- Many cost studies reflect a “u shaped curve”
 - Districts are inefficient up to a point, become efficient and then become inefficient again.
Findings from cost studies

• A 2002 review of the literature indicates this “U” may begin around 4K and end around 15K
 • Andrews, Duncombe, & Yinger 2002
• A 2018 study in Kansas noted a threshold of 10K
 • Taylor et al 2018

Findings from cost studies

• Administrative cost savings in larger districts seem to be offset by transportation costs.
 • Andrews, Duncombe, & Yinger 2002
• Researchers in this area are sensitive to – but unable to pinpoint – district size and school size interactions.
 • Andrews, Duncombe, & Yinger 2002
 • Baker & Duncombe 2004
Findings from cost studies

• Relationally, school (re)composition can impact operational efficiencies
 • Race and class
 • Baker & Duncombe 2004
 • Special education
 • Houck, Rolle, & He 2010
• Often, school finance mechanisms can be leveraged to address these concerns.

Concerns about previous work

• Have only looked at performance levels and not growth in performance
• Have utilized production-function and cost-function approaches based in the idea of technical efficiency
 • Schools are not firms
 • Schools are sometimes thought to practice allocative efficiency on a bureaucratic model
 • Multiple goals pursued simultaneously
 • Uncertainty regarding the nature and frequency of mandates
 • Relative immobility
Findings from cost studies (allocative)

- A study in Texas found no relationship between efficiency and school district size
 - Taylor, Grosskopf, & Hayes 2016
- A study in Georgia found that district size was unrelated to performance on grade level tests and graduation rates, but that district size was positively associated with improved passing on state-administered graduation tests
 - Houck, Rolle, & He 2010

Findings from the Production Literature
Findings from the Production Literature

- Not a sizable literature on LEA size
- Outcomes: test performance (aggregated level), pursuing additional education, average daily attendance, reform “take-up”
- Operationalizing LEA size
- State contexts

Findings from the Production Literature

- Several studies show that smaller LEAs are associated with desired outcomes
 - Higher ADA rates for HS in Texas LEAs with fewer schools (Jones, Toma, & Zimmer, 2008)
 - Higher school-level achievement in California ES and MS (Driscoll et al. 2003)
 - Higher school-level achievement in grades 3, 6, and 9 in NJ (Walberg & Fowler, 1987)
 - Higher school-level achievement and higher test passing rates in NJ high schools with fewer schools in the LEA (Fowler and Walberg, 1991)
Findings from the Production Literature

• Other studies suggest that the impact of LEA size depends on the poverty/SES of the district/community
• As SES increases, the effect of LEA size on student achievement goes from negative to positive
 • Friedkin & Necochea, 1988: District average test scores in CA
 • Howley, 1996: School and district-level achievement in WV
 • Bickel & Howley, 2000: Percentile rank on tests (8th and 11th in GA)
 • Abbot et al. 2002: School-level achievement in 4th and 7th grades in WA

Findings from the Production Literature

• Several studies return positive results for LEA size
 • Larger LEAs have higher 8th grade science scores in TX (Mann et al. 2013)
 • Students coming from larger municipalities more likely to complete higher education in Denmark; key cut-point at 15,000 (Heinesen, 2005)
 • LEA size positively associated with improved passing rates on state-administered graduation tests (Houck, Rolle, & He 2010)
 • Larger LEAs and schools in larger LEAs report greater progress in implementing standards-based reform; some evidence of SES effect (Hannaway & Kimball, 1998)
Findings from the Production Literature

• Interpreting this literature from the deconsolidation perspective...
 • Much of the data come from the 1980s and 1990s
 • Not controlling for much; concerns as to whether it isolates “size” effects
 • Lack of student-level data; almost always aggregated (to school or LEA levels)
 • Little attention paid to interaction effects of LEA and school size
 • “Static” focus on achievement levels rather than growth
 • Lack of “natural experiments” to study

Combined Conclusions

• No optimal size...may differ based on outcome, group, and value
• The NC context
 • Wake and CMS would likely need to be divided into many LEAs to capture potential benefits; still may have larger schools
 • Distribution questions—which portions of these LEAs would form new LEAs?
• Some evidence related to LEA size; concern as to whether it warrants such consequential decisions
 • Opportunity for more recent and rigorous work in NC
The modified quadriform method:

- **Quadrant 1:** Efficient
 - Low Input - High Output

- **Quadrant 2:** Effective
 - High Input - High Output

- **Quadrant 3:** Ineffective
 - Low Input - Low Output

- **Quadrant 4:** Inefficient
 - High Input - Low Output

Efficient production of AMOs, 2015

- Standardized residuals for % AMOs
- Standardized residuals for current expenditures per pupil